1991 Lederation of Laropean Brochemical Societies 00145293-91-53-50 17/2585-001452939100058B

Solution structure of μ -conotoxin GIIIA analysed by 2D-NMR and distance geometry calculations

Karl-Heinz Ott¹, Stefan Becker², Robert D. Gordon² and Heinz Ruterjans³

*Institut für Biophysikalische Chemie, J.W. Goethe Universität. Frankfürt am Main. Germany aud. *Max-Planck-Institut für Biophysik. Abieilung Molekulare Membranbiologie. Frankfürt am Main. Germany

Received 29 August 1990, revised version received 11 October 1990

We have investigated the structure of μ -conotoxin GIIIA by 2D NMR methods. The assignment of III NMR spectra and a quantitative analysis of NOF and J-coupling data are presented. These results were used for the calculation of secondary structure elements of μ conotoxin GIIIA. Distance geometry calculations were carried out to define the global folding of the peptide.

μ-Conotoxin GIIIA, Geographitoxin NMR, 2D, Distance geometry, Peptide synthesis. Comis geographics

1 INTRODUCTION

u-Conotoxin GIIIA (GIIIA), a peptidic neurotoxin from the maine snail Conus geographus selectively blocks Na channels of skeletal muscle, but not neuronal or heart sodium channels [1,2]. This peptide can be used as specific ligand to probe the biochemical mechanisms by which the toxin blocks the sodium conductance [3]. The three-dimensional structure of the peptide will allow an evaluation of the structure-function relationship of the toxin with the channel protein.

Conotoxin GIIIA consists of 22 amino acids with 3 disulfide bonds (Fig. 1). The synthesis and characterization of GIIIA have been published [3-5] and more recently, Hidaka et al. [6] determined the disulfide linkages for GIIIA. To determine the three-dimensional solution structure, high resolution 2D ¹H NMR experiments were carried out. Structures which are consistent with experimental data were calculated with distance geometry algorithms, which can be used as start conformations for energy minimizations and molecular dynamics calculations [7]

Correspondence address H Ruterjans, Institut für Biophysikalische Chemie, Theodor Stern Kai 7, Haus 74A, D-6000 Frankfurt/70, Germany

Abbreviations Hyp. 4 trans-hydroxy-L-proline, NOE, nuclear Overhauser enhancement, dNA, distance between Ha(i) and HN(i), dAN, distance between Ha(i) and HN(i+1), dNB, dBN, dNN similar for $H\beta$ and HN, NMR, nuclear magnetic resonance, DQf COSY, double quantum filtered correlated spectroscopy, NOES\, 2-dimensional (2D) nuclear-Overhauser-enhancement spectroscopy, ROESY, rotating frame Overhauser enhancement spectroscopy, E COSY, exclusive COSY, TOCSY, total correlated spectroscopy; HPLC, high pressure liquid chromatography, Mtr, 4-methoxy-2,3,6-trimethylbenzenesulphonyl

2 MATERIALS AND METHODS

Samples were synthesized by two different strategies. In the first strategy, the preparation, purification and that reterization of GHIA is described in [4], while the synthesis using the second strategy is described in [5]. The HPLC purified product was isophilized several times from (0.1% x/x) TFA/water to remove ammonium acclate. The samples were prepared by dissolving 5 mg and 108 mg of the dried powder in 0.5 ml of H₂O/5% D-O.

Phase sensitive 2D NMR spectra were recorded at 293K, 303K and 315K with a Bruker 500 MHz NMR spectrometer NOLSY [8], ROESY [9,10] and TOCSY [11] spectra were acquired with 512 increments in t₁ and 2A data points in t₂. Mixing times in NOESY and ROESY spectra range from 50 ms to 300 ms. TOCSY spectra were recorded with MLEV-17 spin lock field of 7.2 kHz strength [12] and mixing times between 12 and 80 ms. Transversal Overhauser experiments were obtained with a continuous 2.5 kHz B₁ field DQF-COSY [13,14], E. COSY [15,16] and 1D NMR spectra can be used to determine values for discretal angles. For correlated spectra with multi-quantum tiltering, 1K₁-vints for f₁ and 4K data points for f₂ were acquired. The spectral width was 5000 Hz for all spectra. The data matrices were zero filled to give final matrices of 2K real points in both dimensions. Interatomic distances were deduced from a series of 3 NOESY spectra with mixing times of 50, 125 and 200 ms.

After processing to a final $2K \times 2K$ matrix a contour plot was used to define boxes around each cross-peak. The cross-peak volumes as a function of the mixing time were automatically fitted to a single-exponential function [17]. From the initial build-up rates, the interpioton distances could be calculated [18]. The distances were scaled by using a mean value of the rates of cross-peaks of geminal protons. The error on these distances is smaller than 0.15 Å

To determine the conformation of the individual amino acid, NOEs between amide, $H\alpha$ and $H\alpha$ proton resonances and amide protons of the following residue (d_{NN} , d_{NN} , d_{NN}) as well as intraresidual ones (d_{NN} , d_{NN}) were used [19,20] in combination with coupling constants (^{1}J) [21,22] (Fig. 3) The Karplus equation with parameters given in [21,23] was used to calculate dihedral angles from coupling constants Applying a combination of these methods, possible ranges for the ψ , φ and χ^{1} angles can be obtained

The DISMAN program [24] was used to calculate structures from amino acid sequence and experimental constraints. The concept of pseudoatoms [25] was used to define distances to protons in methylene and methyl groups, which are not explicitly assigned

Lig. 1. Primary sequence of a conotoxin CillA indicating the disulfide budges

3 RESULTS

By reverse phase HPIC, mass spectrometric and competition binding experiments the sample synthesized by the published methods was proven to be pure with high activity (data not shown). The NMR spectra of the first sample indicated more than one conformation of this species (Fig. 2). This was indicated by the occur rence of more than the expected cross-peaks in the fingerprint region. As an example, two different sets of resonance positions could be identified for the protons of This and Ala23. The overlapping resonances at 8.3 ppm and 4.3 ppm indicated a random coil structure for at least parts of the molecule. In the 1D H NMR spectrum additional resonances for aromatic protons were found. We have assumed that they are residual Mti protecting groups of arginine side chains. The improved synthesis led to a complete cleavage of protecting groups and to a simplified purification and preparation. In the spectra of this sample there is no evidence for more than one stable conformer

TOCSY experiments yield a map of through-bond couplings for the individual amino acids. The first step in resonance assignment was the identification of the spin systems. NOESY and ROESY experiments contained information about interproton distances. Sequential assignment of the amino acid resonances was performed by identifying connectivities between amide proton resonances of one amino acid and $H\alpha$ and $H\beta$ proton resonances of adjacent ones in NOESY and ROESY spectra. This assignment was confirmed by sequential amide-amide proton resonance connectivities For Hyp the H δ protons were used instead of amide protons in other amino acids. Resonances overlapping with the water proton resonance at a given temperature were assigned in the spectra recorded at a different temperature The integrated NOESY cross-peaks were examined for possible overlapping of the resonances and for unusual line shapes 80 interproton distances could be clearly assigned, about 40 NOEs had to be discarded for the first analysis. Unfortunately, most of the long range NOEs important for determining the global folding were ambiguous due to resonance overlap. For all pairs of proton resonances all NOESY and ROESY spectra were searched for corresponding cross-peaks In cases where unambiguously no NOEs were observed, the lower limit of this distance was set to 3.5 Å The resulting more than 700 'non-NOEs' were used as upper limit constraints in DISMAN calculations. A qualitative comparison of corresponding NOE and ROE intensities indicated that the contribution of differences in the correlation time is small. Coupling constants were extracted from 1D, double quantum filtered COSY and E. COSY experiments (Table I)

At first, it was only possible to assume a disulfide bridge between residues 3 and 15, which was confirmed by a NOF between Cys¹ Ha and Cys¹⁵ Ha, and between Cys¹⁵ Ha and Cys¹ Ha

NOE connectivity patterns for regular secondary structural elements like α -helices or β -pleated sheets [26] were not found. The stereospecific assignment of the H β protons was based on modelling and calculations of substructures using information on short range NOEs and ${}^{4}L_{\alpha}$ coupling constants, also with respect to the interpretation of ${}^{4}L$ couplings the determination of a preliminary substructure was necessary. Since there is no singularity in the Karplus equation only a combination of distances and coupling constants can restrict the different possibilities of dihedral angle ranges. This will be demonstrated in the following example.

The NOE between Cys¹ H α and Cys¹ HN was weak which indicated a negative φ value ${}^{1}J_{N_{1}}$ of Cys 1 is small, limiting the φ value to a range of -60° to 0° . A small ³I_{1b}, and a large ³I_{1b}" is observed in gauche². trans' of trans2-gauche' conformations. We were able to distinguish between these two by comparing NOEs between the H β protons and the amide proton of the following residue For the gauche²-trans³ conformation two strong NOEs should be observed, while for the other conformation one strong and one weak NOE would be expected. In GIIIA a strong NOE of one of the Cys' HBs to the HN of Cys' restricted the & value of Cys¹ to a range of $+40^{\circ}$ to -140° Since the distance between Cys³ H α and Cys⁴ HN is larger than about 3 Å a further restriction to the range of -40° to $+40^{\circ}$ for the \(\sqrt{\text{angle was possible}} \)

In the same way the conformations of the other Cys residues were analyzed. The two possible assignments for the H β protons of Cys⁴ led to χ^1 angles of -60° or 0° . This range could be used as a dihedral restraint. For Cys¹⁰ we assume a χ^1 angle of -60° . Also for Cys²⁰ the stereospecific assignment of H β resonances was possible and a χ^1 value of $+60^\circ$ was determined

The two adjacent Hyp residues were expected to have a distinct secondary structure. A very strong cross-peak between the H β of Thr⁵ and one of the H δ of Hyp⁶ indicated a *trans* peptide bond. It was not possible to find any NOE between protons of Hyp⁶ and Hyp⁷, which showed that the planes of the two Hyp rings are arranged at an angle of almost 90° with respect to each other and the peptide bond is in the *cis* configuration. The NOEs expected between the two hydroxyprolines in this

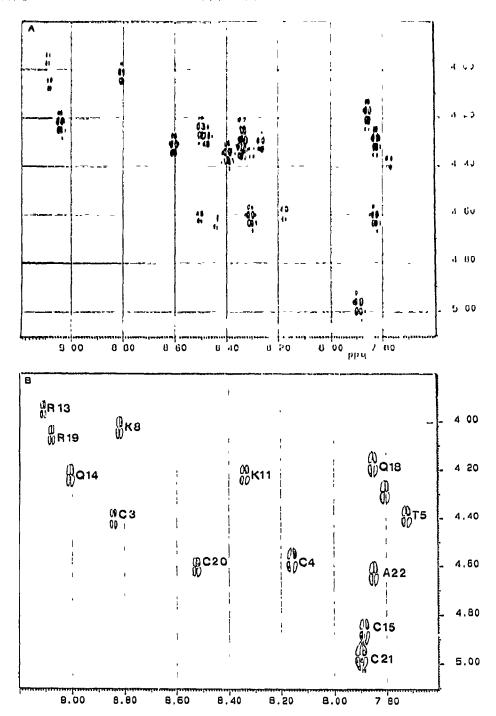


Fig. 2 HN-Hα tingerprint region of the COSY spectra of (A) GIIIA synthesized by the method described in [4], and (B) after modifying the synthesis [5]. In (B) the assignment of the resonances is indicated

conformation were not detected because of overlap of both the H α protons and the H β 2 resonances Lys¹⁶ and Hyp¹⁷ are connected by a *trans* peptide bond which was indicated by NOEs between Lys¹⁶ HN and both Hyp¹⁷ H δ protons

Additional HN-H α NOEs between amino acid residues separated by two sequential steps confirmed

the modelling of the loop structures. These NOEs were observed between residues 3 and 5, 10 and 12, 13 and 16, 17 and 19, 18 and 20. With this additional information, the calculations resulted in loop structures in between Asp^2 and Tyr^5 . This loop resembles a type I β -turn. Turn structures were also found for the sequence Cys^{10} to Arg^{14} . Two kinks in the course of the backbone

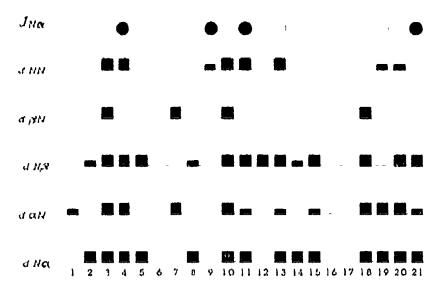


Fig. 3. Sequential connectivities and 31 coupling constants for GIHA. Small and large bars indicate weak and strong NOLs, respectively. Filled stroles symbolize J coupling values larger than 7.5 Hz, open circles indicate couplings smaller than 6.5 Hz.

between $\operatorname{Hyp}^{4^{\circ}}$ to Cys^{21} were determined (Fig. 4). Having defined these substructures, the identity of some long range NOEs, which were ambiguous due to resonance overlap could be confirmed: Asp^2 $\operatorname{H}\beta$ and Cys^{21} $\operatorname{H}\beta$ are overlapping. In the modelled loop no NOE is expected between Asp^2 $\operatorname{H}\beta$ and Cys^4 $\operatorname{H}\alpha$, therefore confirming the assignment of this NOE to

 Cys^{21} H β . This is in agreement with the disulfide bonds between Cys^4 and Cys^{21} .

Finally, starting from initial random structures 30 different conformations were obtained in a distance geometry calculation. 80 upper limits, 780 lower limits, 10 dihedral ranges and 18 distances for the disulfide bridges restricted the possible conformations (Fig. 5).

Table I

Chemical shifts and coupling constants for GIIIA at 293K

		IIN	HA	HB2 HB3	HCı	others	3J _{N4}	35,,,.	3 J., ~
1	Arg	7 92	4 03	(1 90,1 98)	1 52,1 45				
2	Asp	9.06	4 75	(3 06,3 00)			67		
3	Cvs	8 97	43	2 97 2 62			5.4	2-3"	10-11 ^a
4	Cys	8 12	4 52	(3.50,2.83)			7 8	< 12 th	3-41
5	Thr	7 63	4 37	4 93	1 22			< 5	
6	Hpr	-	48	197 237	4 63	4 03,3 79			
7	1qH	_	4 72	2 28 2 38	4 57	3 67,3 48			
8	Lys	8 87	3 98	(1.93, 1.82)	1 25	1 63,2 98	5 0		
9	Lys	8 2		• • •			8 2		
10	Cys	7 36	4 3	3 18 2 77			< 5	127	5 th
11	Lys	8 38	4 16	(1.93, 1.72)	1 3,1 4	1 6,2 93		8 2	
12	Asp	7 96	4 68	3 06 2 96	•		7.5	~ 5	~ 5
13	Arg	9 23	3 88	(1 95,1 83)	1 67,1 63			< 5	
14	Gln	8 98	4 16	(2 42,2 03)			5 5		
15	Cys	7 90	48	(3 05,3 15)			< 5		
16	Lys	7 65	4 03	(1 92,1 82)	1 4,1 5	1 6,2 9		7 5	
17	Hpr	-	46	2 36 1 9	4 44	3 21,3 785	6-8	6-8	
18	Gln	7 88	4 12	(2 47,2 32)	2 0		60		
19	Arg	9 14	4 01	(1 95,1 83)	1 70		< 5		
20	Cys	8 55	4 55	3 82 3 03			5 5	4 ^t '	4 ^b
21	Cys	7 88	4 92	(3 19,2 93)			92		
22	Ala	7 92	4 25	1 40				7 5	

Chemical shifts are reported in ppm relative to external TSP. Coupling constants are given in Hz. Values for β proton resonances given in brackets were not selectively assigned.

^a Values obtained directly from COSY or 1D spectra

b Coupling constants determined from the E COSY spectra

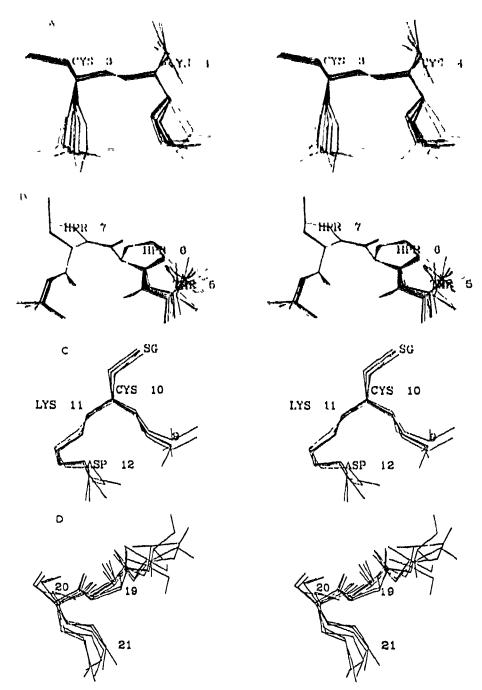


Fig. 4 Stereo views of the superimposed substructures calculated using the DISMAN program. The substructures are taken from the overall conformations of GIIIA, they are superimposed at the backbone atoms of the displayed tragment. (A) Sequence Asp² to Tvr⁵. (B) sequence Tyr⁵ to Lys⁸, (C) sequence Lys⁹ to Asp¹², (D) sequence GIn¹⁸ to Cys²¹

4. DISCUSSION

In order to elucidate the three-dimensional solution structure of GIIIA, and here we present details of the secondary structure elements and a hypothesis for its global folding

First the NMR spectroscopy was used as an analytical tool to optimize the GIIIA synthesis in order to obtain a pure sample, which was the basis for sequential

assignment and accurate structural analysis. The high dispersion of the amide proton resonances, many $^3J_{NA}$ coupling constants different from 7.5 Hz and sometimes large differences in the chemical shift of the H β' and H β'' proton resonances indicated a defined folded structure. The secondary structure elements are restricted to different loop structures. The loops between Asp² and Tyr⁵, Cys¹⁰ and Ar $_2$ ¹³, and Hyp¹⁷ and Cys²⁰ can be

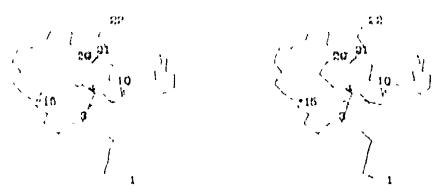


Fig. 5. This stereo view depicts the backbone atoms of the GHIA conformation which best fits the experimental constraints

determined with very high accuracy due to a high amount of experimental data. Differences between distances derived from NOF values and from the distance geometry calculations of these peptide segments were found to be smaller than 0.3 Å. This is well within the range of experimental error which arises from the signal-to-noise ratio and the approximations made in calculating distances from NOEs. It should be emphasized that the use of 'non-NOEs' mainly reduces the number of wrong conformations in the calculations. A structure prediction for two of these three loops using the Chou and Fasman rules [27] has been published [6], which we were able to confirm experimentally.

For determining the complete tertiary structure the detailed structural analysis of parts of the molecule it was necessary to include dihedral restraints derived from J-couplings [21,23]. Minor residual violations of the experimental constraints were found in all calculated conformations. The structure with the lowest error value is presented in Fig. 5. As outlined above, there are certainly differences in the accuracy of determining the conformation of peptidic segments. Of course, the more distance and dihedral angle constraints can be obtained, the more the conformation can be precisely determined. For the more flexible parts of molecules fewer distances and dihedrals are found to occur. In GIIIA accurate fitting of the experimental results were obtained for those parts of the molecule, where a lot of constraints were defined Structural flexibility in parts of the molecule will result in experimental values representing an average of fast exchanging conformers. Some of the experimental results cannot be interpreted with a rigid structure model. Some observations confirm this difficulty in the interpretation. The intensity of the NOESY and ROESY signals is relatively low and the signals are broad. We have some indication, that near Lys9 more than one conformer is present. A line broadening of the Lys⁹ side chain proton resonances indicates a slow exchange between these conformations.

A more detailed analysis of the structural and dynamic properties will be presented in a forthcoming paper.

teknowledgements. We trank Prof. H. Michel for his generous advice and invistance. We think Dr. W. Braun for a version of the DISMAN program. This work was supported by the Deutsche Forschungsgemeinschaft Grant SEB 169. Projects C4 and B6, and by a Leibnitz Program grant to Prof. 14. Michel

REFERENCES

- [1] Gray, W.R., Olivera, B.M. and Cruz, I. J. (1988) Annu. Rev. Biochem. 57, 665-700.
- [2] Becker, S. and Gordon, R.D. (1990) in (Herken, H. and Hucho, L., eds) Selective Neurotoxicity, Handbook of Experimental Pharmacology, Springer-Verlag, Berlin (in press)
- [3] Cruz, I. J., Kupryszewski, G., LeCheminant, G.W., Gray, W.R., Olivera, B.M. and Rivier, J. (1989) Biochemistry 28, 3437-3442.
- [4] Becker, S., Atherton, 1 and Gordon, R.D. (1989) Eur. J. Biochem 185, 79-84
- [5] Becker, S., Liebe, R. and Gordon, R.D. LEBS Lett. (in press)
- [6] Hidaka, Y. Sato, K., Nakamura, H., Kobayashi, J. and Shimonishi, Y. (1990) FEBS Lett. 264, 1, 29-32.
- [7] Scheek, R.M., Gunsteren, W.F. van and Kaptein, R. (1989) in Methods in Enzymology, vol. 177, pp. 204-218, Academic Press, New York
- [8] Macura, S. and Ernst, R.R. (1980) Mol. Phys. 41, 95-117
- [9] Bothner-By, A., Stephens, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. (1984) J. Am. Chem. Soc. 106, 811
- [10] Bax, A and Davis, D G (1985) J Magn Res 63, 207-212
- [11] Davis, D.G. and Bax. A. (1985) J. Am. Chem. Soc. 107, 2820-2821
- [12] Bax, A and Davis, D G (1985) J Magn Res 65, 355-360
- [13] Piatini, U., Sørensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc. 104, 6800
- [14] Shaka, A J and Freeman, R (1983) J Magn Res 51, 169
- [15] Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1985) J. Am. Chem. Soc. 107, 6395-6396
- [16] Griesinger, C., Sørensen, O.W. and Frast, R.R. (1987) J. Magn. Res. 75, 474-492
- [17] Peppermans, H., Trouwè, D., Binst, van G., Boelens, R., Scheek, R.M., Gunsteren, van W.Γ. and Kaptein, R. (1988) Biopolymers 27, 323-338
- [18] Solomon, I (1955) Physical R 99, 559-565
- [19] Billeter, M., Braun, W., Wuthrich, K. (1982) J. Mol. Biol. 155, 321-346
- [20] Sherman, S A, Andrianov, A M and Akhrem, A A (1987) J Biol Str Dyn 4, 869-884
- [21] Hyberts, S.G., Marki, W. and Wagner, G. (1987) Eur. J. Biochem. 164, 625-635
- [22] Basus, V J (1989) Methods Enzymol 177, 132-149
- [23] Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol. 180, 741-751

- [24] Braun, W. and Go, N. (1985) J. Mol. Phys. 186, 611–626 [25] Wuthrich, K., Billeter, M. and Braun, W. (1981) J. Mol. Biol
- 169, 949-961
- [26] Richards n, LS (1981) Adv. Prof. Chem. 34, 167-139. [27] Chou, P. J. and Eisman, G.D. (1978) Adv. University 17. 45 148
- [28] Keepers, J.W., and Jam. c, J.J. (1983), J. Magn. Rev. C., 401 426
- [29] Kyysler, H., Offesinger, C., Lautz, J., Muller, A., Gunsteren, van W. 1. and Herendsen H. J. C. (1988) J. Am. Chem. Soc. 110, gett tett